

The low glycemic index of bajra makes it an ideal food for diabetics and those seeking to manage obesity and cardiovascular diseases. It also provides significant dietary fiber, promoting digestive health and reducing cholesterol levels.

Economic and Social Significance

Economically, bajra plays a vital role in ensuring livelihood security for millions of smallholders. It requires minimal input and provides a dependable harvest even in years of poor rainfall. The crop's dual-purpose nature—as both grain and fodder—adds to its profitability. Bajra is also gaining commercial value in the food industry, where it is being incorporated into ready-to-eat mixes, bakery products, and health foods. Its potential in promoting millet-based entrepreneurship is now being recognized under various government initiatives promoting "nutri-cereals" and sustainable food systems.

Origin, Botany, and Genetic Diversity

Bajra is believed to have originated in the Sahel region of Africa before spreading to India and other tropical areas. It belongs to the grass family Poaceae and is characterized by its robust morphology and high adaptability. The plant has a strong fibrous root system that penetrates deep into the soil, enabling efficient water and nutrient absorption even under drought conditions. Its stems are sturdy, and its leaves are coated with a thin waxy layer that reduces transpiration losses. The inflorescence is a dense, cylindrical spike that bears thousands of small grains varying in colour from white and yellow to grey or brown. Bajra is a C4 plant, which gives it a high photosynthetic efficiency and greater water-use efficiency compared to C3 cereals like wheat and rice. The crop is highly cross-pollinated, allowing for the development of hybrid varieties with superior yield potential, disease resistance, and improved nutritional quality. Over the years, plant breeders have successfully developed numerous hybrids suited to different agro-climatic zones, contributing significantly to yield enhancement and regional adaptation.

2

INTRODUCTION

Bajra or pearl millet, is one of the most important millets cultivated worldwide and holds a special place in India's agrarian landscape. It thrives in conditions where other cereals fail, making it indispensable to farmers in semi-arid regions. Its ability to withstand drought, heat, and low-fertility soils has earned it the reputation of a "poor man's crop," though in reality, it is one of the most nutritionally rich and agronomically resilient cereals. Bajra provides both grain for human consumption and stover for animal feed, thereby supporting mixed farming systems that are common across rural India. Beyond its role as food and fodder, bajra contributes significantly to soil health and ecological stability, making it a cornerstone of sustainable dryland agriculture.

Nutritional value of pearl millet

Bajra is a powerhouse of nutrients and is often considered superior to rice and wheat in many aspects. It contains high levels of protein, dietary fiber, and essential minerals such as iron, zinc, magnesium, and phosphorus. It is also rich in antioxidants and polyphenols that contribute to its health benefits.

1

क्रमांक: COOP/2023/KOTA/201080/25/34

एग्रीकल्चर फॉरम फॉर टेक्निकल एजुकेशन ऑफ फार्मिंग सोसायटी

कोटा, राजस्थान

Scientific Cultivation and Importance of Bajra

संकलन

Dr. Rajeev Kumar¹, Dr. Pradeep Kumar²,
Dr. Awadhesh Kumar³ and Dr. Anil Kumar⁴

¹Assistant Professor, School of Agriculture, Sanskriti University, Mathura, Uttar Pradesh

²Assistant Professor-cum- Junior Scientist, Veer Kunwar Singh College of Agriculture, Dumraon, Buxar, Bihar

³Subject Matter Specialist (Horticulture), Krishi Vigyan Kendra, Ballia, Acharya Narendra Deva University of Agriculture & Technology, Kumarganj, Ayodhya, Uttar Pradesh

⁴Assistant Professor, Department of Vegetables Science, College of Horticulture and Forestry, Acharya Narendra Deva University of Agriculture & Technology, Kumarganj, Ayodhya, Uttar Pradesh

Agro-Ecological Requirements and Adaptations

Bajra is a quintessential dryland crop capable of thriving in environments with annual rainfall as low as 200 mm. It grows well in sandy loam to loam soils with good drainage and a pH range of 6.5 to 7.5. The crop is intolerant to waterlogging but can tolerate moderate salinity and acidity better than most cereals. Its short growth duration allows it to escape terminal drought, making it suitable for regions with short and erratic monsoon periods. Climatically, bajra requires warm conditions with optimal temperatures ranging from 25°C to 35°C. Its deep roots, waxy leaves, and efficient stomatal regulation mechanisms make it highly resilient to moisture stress. These adaptations not only ensure survival in harsh conditions but also make it an excellent crop for climate-resilient farming systems.

Scientific Cultivation Practices

Land Preparation and Sowing

Proper land preparation ensures good germination and crop establishment. The land is ploughed once deeply, followed by two to three harrowing and planking to achieve a fine tilth. In rainfed areas, sowing should coincide with the onset of monsoon, while in irrigated tracts, it can be adjusted to the local cropping calendar. Seeds are usually sown 3–4 cm deep in rows spaced 45–60 cm apart, with a plant spacing of 15–20 cm. Timely sowing is crucial, as delayed planting can lead to poor seedling establishment and yield loss.

Variety and Seed Management

Selection of the right variety or hybrid is the key to successful cultivation. Modern hybrids offer higher yields, better drought tolerance, and resistance to major diseases. Certified seeds should be used to ensure uniform germination and vigour. Seed treatment with biofertilizers or fungicides enhances germination and protects seedlings from early-stage diseases.

3

Nutrient and Soil Fertility Management

Bajra is responsive to soil fertility improvement despite its ability to grow in poor soils. The crop benefits from integrated nutrient management combining organic manures and chemical fertilizers. A balanced dose of nitrogen, phosphorus, and potassium enhances both grain and fodder yield. Application of farmyard manure or compost improves soil structure and moisture retention. In low-input systems, intercropping bajra with legumes such as cowpea or green gram helps in natural nitrogen enrichment of the soil.

Water Management

Although bajra is primarily a rainfed crop, timely irrigation at critical growth stages particularly tillering and flowering can significantly boost yields. Water conservation techniques such as mulching, ridge-and-furrow planting, and contour bunding are effective in improving moisture retention. In areas with limited rainfall, supplemental irrigation using harvested rainwater can make a substantial difference in productivity.

Weed, Pest, and Disease Management

Weeds compete aggressively with bajra during the early growth stages. Two manual or mechanical weeding at 15–30 days after sowing help maintain a clean field. The crop is relatively hardy but can be affected by diseases such as downy mildew, smut, and ergot, and pests like stem borers and head miners. The use of resistant varieties, crop rotation, seed treatment, and timely cultural practices form the backbone of integrated pest and disease management in bajra.

Harvesting and Post-Harvest Handling

Bajra is ready for harvest when the grains harden and the ear-heads turn brownish. Delayed harvesting can lead to bird damage and grain shattering. After harvesting, the crop should be dried thoroughly to about 12% moisture content to ensure safe storage.

4

Threshing is usually done by beating or trampling, and the clean grain is stored in airtight containers to prevent infestation. The crop residue serves as valuable livestock fodder.

Challenges and Future Prospects

Despite its resilience, bajra cultivation faces several challenges. Yields in traditional rainfed areas remain low due to limited access to quality seeds, poor soil fertility, and inadequate adoption of improved technologies. Climate variability, soil degradation, and market limitations also hinder expansion. Future strategies must focus on developing climate-smart and biofortified varieties with higher nutrient content, drought and heat tolerance, and pest resistance. Strengthening seed systems, improving extension services, and promoting mechanization will enhance productivity and profitability. Additionally, value addition through processing and branding can transform bajra from a subsistence crop into a commercially competitive, health-oriented grain.

CONCLUSION

Bajra exemplifies the resilience and adaptability of traditional crops in modern agriculture. Its scientific cultivation holds immense promise for ensuring food, nutritional, and livelihood security in regions vulnerable to climate stress. With its rich nutritional profile, low input requirement, and ecological benefits, bajra is poised to play a pivotal role in achieving sustainable agricultural development and dietary diversification. Promoting its cultivation, processing, and consumption can significantly contribute to the global goal of creating resilient and nutrition-sensitive food systems.

5