

Furthermore, certain BCAs perform as ecosystem engineers, fundamentally reshaping the rhizosphere or phyllosphere microbiome to a persistently disease-suppressive state, and for specific bacterial diseases, targeted biologicals like bacteriophages offer precision strikes, illustrating a comprehensive mechanistic portfolio that ranges from direct attack and resource competition to host immunization and long-term ecological modulation.

Major Groups of Biocontrol Agents: The diverse arsenal of biological control agents is led by several major microbial groups, each with distinct advantages and operational profiles, beginning with the extensively used fungal genus *Trichoderma*, renowned for its direct mycoparasitism, prolific metabolite production, and plant growth promotion, though its efficacy is modulated by environmental conditions. The bacterial domain is dominated by robust, spore-forming *Bacillus* species, whose resilience and broad-spectrum antibiotic activity make them ideal for commercial formulations, while non-spore-forming rhizobacteria like *Pseudomonas* offer potent siderophore and antibiotic production but present greater formulation challenges due to their sensitivity. Complementing these are the metabolically prolific actinobacteria, such as *Streptomyces*, which provide dual disease suppression and growth promotion, and highly specific bactericidal agents like bacteriophages, which require protective formulations to counter UV sensitivity. The most advanced approach involves designing synthetic microbial consortia that combine fungi, bacteria, and other beneficial microbes to create a functionally redundant, multi-mechanism alliance, thereby enhancing adaptability, persistence, and overall reliability in the complex and variable field environment, moving beyond the limitations of single-strain products.

From Discovery to Product: Screening and Formulation: The journey of a promising microbial isolate from a laboratory discovery to a reliable commercial biopesticide hinges on a rigorous, multi-stage development pipeline designed to bridge the critical gap between ideal *in vitro* conditions and the harsh realities of the field, beginning with isolation from suppressive soils or plant niches and progressing through *in vitro* antagonism tests, greenhouse trials under varied environmental stresses, and ultimately multisite field evaluations to ensure performance across diverse agronomic conditions.

2

INTRODUCTION

The relentless threat of plant diseases, caused by a spectrum of fungal, bacterial, and viral pathogens, remains a major barrier to global food security, a challenge historically met with heavy reliance on chemical pesticides whose efficacy is now undermined by issues of pathogen resistance, environmental contamination, and market pressures for residue-free produce. This has propelled biological control the strategy of using beneficial microbes to suppress disease from an observational concept rooted in early discoveries of natural soil suppression into a modern, mechanism-driven discipline. While today's biologicals are valued not merely as chemical substitutes but as ecological enablers that rejuvenate the plant's microbiome for enhanced resilience, the critical hurdle to their mainstream adoption is bridging the persistent chasm between consistent laboratory success and variable field performance, a challenge that defines the contemporary quest to make biocontrol a reliable pillar of integrated crop health management.

Mechanisms of Biological Control

The efficacy of biological control agents (BCAs) stems from their sophisticated and often synergistic deployment of multiple defensive strategies, creating a robust, multi-layered system for disease suppression. This begins with direct antagonism, where mycoparasitic fungi like *Trichoderma* physically coil around and lyse pathogenic hyphae using cell-wall-degrading enzymes, while bacteria and actinomycetes wage chemical warfare by producing a diverse arsenal of antimicrobial compounds, volatile organic compounds, and siderophores that disrupt spore germination and biofilm formation. Simultaneously, BCAs engage in intense competition, rapidly colonizing plant surfaces to occupy physical space and sequester essential nutrients like iron, effectively starving potential pathogens. Beyond direct confrontation, many agents act as plant allies by inducing systemic resistance, priming the host's own defence pathways to mount a faster, stronger response involving phytoalexins and callose deposition upon pathogen challenge.

1

क्रमांक: COOP/2023/KOTA/201080/25/37

एग्रीकल्चर फॉरम फॉर टेक्निकल एजुकेशन ऑफ फार्मिंग सोसायटी

कोटा, राजस्थान

Biological Control of Plant Diseases Current Status and Future Prospects

संकलन

Dr. Ashwini Kumar

Department of Plant Pathology, R. A. K. College of Agriculture, RVSKV, Sehore, Madhya Pradesh

However, the pivotal element that often determines commercial success is advanced formulation science, which involves selecting optimal carriers like talc or polymers, incorporating protectants and humectants, and employing microencapsulation or drying technologies to enhance the agent's shelf life, viability, and resilience, all while ensuring consistent quality control and compatibility with existing agricultural inputs like fertilizers and pesticides, thereby transforming a fragile laboratory strain into a robust, farmer-ready product.

Field Efficacy and Constraints: Despite a robust scientific foundation, the real-world performance of biological control agents often exhibits frustrating variability for farmers, a challenge stemming from a complex interplay of biological, environmental, and human factors. The introduced microbes are highly sensitive to field conditions like temperature, soil moisture, and pH, and must fiercely compete with established native microbiota to successfully colonize the plant, a race they can lose if application timing is misaligned with the pathogen's arrival or if excessive pathogen inoculum overwhelms their capacity. Furthermore, economic and behavioural hurdles—such as higher perceived costs, slower visible results compared to chemicals, and improper storage or handling that degrades product viability before it even reaches the field—significantly hinder adoption, underscoring the critical need for extension services to educate on the precise application timing, strategic placement, and intelligent integration with other IPM practices that are essential for unlocking consistent biocontrol success.

3

Regulation, Safety, and Commercialization: The widespread adoption of microbial biopesticides hinges on successfully navigating the intricate landscape of regulation, safety, and commercialization, where these inherently safer agents still face demanding and often inconsistent regulatory pathways that assess everything from environmental fate to non-target effects, creating a need for clearer, risk-proportionate guidelines to accelerate market entry. Beyond approval, commercialization is constrained by significant hurdles including access to specialized production facilities, the challenge of protecting intellectual property for natural strains, ensuring consistent product quality, and maintaining microbial viability through complex supply chains. Overcoming these barriers requires a concerted effort, likely through public-private partnerships, startup incubation programs, and supportive government procurement, to ultimately scale these promising technologies and deliver them effectively to farmers.

Emerging Trends and Future Prospects: Biological control is now entering a transformative phase, propelled beyond traditional microbiology by the convergence of modern biology and digital agriculture. Key trends are shaping its future: omics-guided discovery is unlocking novel microbes and their pathways directly from the environment, while microbiome engineering focuses on designing synergistic microbial consortia for multi-functional benefits. The efficacy of these agents is being enhanced through synthetic biology for improved traits and advanced delivery systems like protective seed coatings and drone-enabled application for precise placement. Furthermore, integration with precision agriculture allows for data-driven, targeted use, improving cost-effectiveness, and this entire evolution is accelerated by a powerful policy and market pull towards sustainable practices. With these scientific, technological, and socio-economic drivers aligned, the next generation of biocontrol is poised to become consistently reliable, highly specific, economically attractive, and a fundamental pillar of climate-resilient crop health management.

4

CONCLUSION

Biological control of plant pathogens has matured from a simple ecological curiosity into a sophisticated, multi-disciplinary science, integrating plant pathology, microbiology, and agronomy to offer an ecologically sound approach that is vital for sustainable agriculture and soil health restoration. The primary hurdle is no longer discovering effective microbes, but ensuring their consistent performance in the field, a challenge that will be overcome by precisely matching strains to specific crops and environments, advancing formulation and delivery technologies, intelligently integrating biocontrol with other IPM tools, and fostering supportive regulatory and market frameworks. With these pillars in place, biologicals are poised to shed their "alternative" status and become the default, frontline defense in modern plant disease management.

5